INTERNATIONAL JOURNAL OF

SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 38 (2001) 1889-1902

Friction and rigid body identification of robot dynamics

M. Grotjahn *!, M. Daemi, B. Heimann *

Institute of Mechanics, University of Hanover, Appelstrasse 11, D-30167 Hanover, Germany
Received 3 September 1999; in revised form 29 December 1999

Abstract

In this paper, an identification method for industrial robots is described that does not require the a priori identi-
fication of the friction model. First, the necessity for such a method is motivated by an overview on conventional
friction modelling and rigid body identification. It is shown that the time variance of typical friction characteristics lead
to systematic identification errors. They are avoided by the presented method, which is based on separating the base
parameters into three different groups. Each group is identified by simple measurements and a weighted least-squares
method. Measurements are carried out with simple motions in the neighbourhood of a number of especially selected
joint configurations. Further advantages of this method are its easy implementation for standard robot controls and the
possibility to find modelling errors. The experimental implementation of this method to a typical industrial robot with
six rotational joints is carried out and yields remarkable results. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Common identification methods for industrial robots are based on the description of the equation of
motion in terms of a linear parameter vector of minimal order (base parameters) (Gautier and Khalil,
1988a; Khosla, 1988) and the use of least-squares (LS) error minimisation criteria (Armstrong, 1988, 1989;
Daemi and Heimann, 1996; Daemi and Grotjahn, 1996; Gautier and Khalil, 1988b; Gautier et al., 1995;
Lawson and Hanson, 1974; Pfeiffer and Holzl, 1995; Presse and Gautier, 1993; Priifer et al., 1994). The
robot is typically moved along a trajectory, which is generated using an optimisation scheme to attain
maximum excitation of all base parameters. Joint motion and joint torque are measured and the torque due
to friction is compensated using a measured friction model. Then, a batch LS algorithm is used to calculate
the base parameter vector.

In practice, it can be observed that, even with good excitation of all parameters, the results still show
some systematic errors (Daemi and Heimann, 1996; Daemi and Grotjahn, 1996). One reason for these
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errors is the variation of friction characteristics during the measurements. Further difficulties arise from the
restrictions of standard robot controls, since optimised trajectories usually require additional hardware for
generating arbitrary joint motions.

In this paper, a two-step approach for the identification of the base parameter vector is described. It is an
extension of the algorithm introduced by Seeger (1992) which requires only trajectories with trapezoidal
velocity characteristic and no a priori compensation of the friction model. The idea is to measure directly
the moments of inertia and the gravitational torques for a number of different joint configurations. The
resulting values are used to calculate the base parameter vector by a weighted LS method. The only as-
sumption that has to be verified in advance is that the friction characteristics are symmetric.

The modelling and the time variance of friction are discussed in Sections 2 and 3. In Section 4, the rigid
body modelling is presented. Section 5 gives an overview on conventional identification methods. The two-
step identification scheme is explained in Section 6. And finally, in Sections 7 and 8§, the experimental set-up
and results are depicted. The results hold for a wide range of industrial robots, since the tested manipulator
Siemens manutec-rl5 is a typical industrial system with different types of gears.

2. Modelling and identification of gear friction

Normally, very stiff gears with small backlash are used in industrial robotics. Therefore, gear elasticity
and backlash have small influence on the controlled system’s dynamics. This influence can be avoided by a
proper choice of identification measurements.

Besides rigid body dynamics, only the losses in gears and bearings are taken into account by friction
models. For their identification, friction has to be separated from other dynamic effects. By using trajec-
tories, where only one axis is moved, and selecting parts of the measurement with constant velocity, the
influences of acceleration, centrifugal and Coriolis forces are eliminated. If gravitation has an influence on
the torque of the regarded axis, it has to be compensated by a model identified in advance. Thus, the
following measurements can be assumed to solely reflect the influence of friction in gears and bearings.
The identification of gravitation model can be done without the knowledge about friction behaviour by the
method proposed in Section 6.

Friction losses of a single robotic joint i are usually modelled as a torque Q;f which is a function of its
own rotational joint speed ¢;. This non-linear function is mostly described by the sum of terms for viscous
damping and dry friction (Armstrong-Hélouvry, 1991; Armstrong-Hélouvry et al., 1994; Canudas de Wit
et al., 1991; Pfeiffer and Holzl, 1995; Seeger, 1992):

Oin = ai1q; + a;»sign(g;). (1)

This simple model needs to be refined for more precise modelling (Daemi and Heimann, 1996; Priifer
and Wahl, 1994). Fig. 1a shows measured friction torques of some axes of a robot over their full speed
range, normalised to their maximum speed and maximum torque. It can be seen that all axes show sig-

nificant degressive characteristics, not covered by the simple model given in Eq. (1). A better description of
the measured friction characteristics can be found by using one of the following equations:

Oin = a;1q; + a;»sign(g;) + ai,3q:/37 (2)

Oi3 = a;1G; + a;281gn(g;) + a;3 atan(a; 44;). (3)

For a given measured friction characteristic, an analytical description with a minimal square model error
can easily be calculated for Egs. (1) and (2), since they have only linear dependencies with respect to their
parameters. Whereas for model (3), a non-linear optimisation procedure is applied. As depicted in Fig. 1b,
both models lead to much better results than the classic equation (1). The mean quadratic error between the
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Fig. 1. (a) Normalised friction characteristics for different axes of the manutec-r15. (b) Adaption of friction models to measured friction
characteristics of axis 1.

measured and modelled torque is used to decide whether model (2) or (3) gives a better description of the
measured characteristics. It has to be kept in mind that modelled parameters a; found in this way no longer
represent mechanical models (such as dry friction or viscous damping) but merely force the sum of all
effects of the multistage gears into a mathematical description.

3. Time variance of friction characteristics

The major problem in friction modelling is the time variance of friction (Daemi and Heimann, 1996,
1998; Priifer and Wahl, 1994). Commonly, relatively large time constants are assumed that arise from
temperature variation in gears and bearings. Thus, the typical approach for the friction modelling in ro-
botics is to use some ‘warm-up’ time, where the robot is supposed to reach stationary conditions (Arm-
strong, 1991; Daemi and Heimann, 1996; Seeger, 1992). The measurements in Fig. 2a shows that this does
not generally hold for geared robots.

The figure shows friction with respect to time for a multistage robot gear which is continuously moved
back and forth. The torque is measured every 12 s in periods, with constant velocity. The motion is in-
terrupted at different times for short periods (5, 1 and 2 min). It shows that after these short interruptions,
the friction becomes significantly larger. This effect implies that not only temperature but also the distri-
bution of lubricants determines friction conditions. Therefore, it is very difficult to ensure equal conditions
for the friction characteristics at two separate measurements. Actually, even during a precise friction
measurement (which takes a few minutes) operating conditions might change.
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Fig. 2. Time variance of friction characteristics: (a) variations during steadily back and forth motion with short brakes, and (b) change
of friction characteristic of joint 2 during continuous operation.
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The changing of measured friction characteristics is depicted in Fig. 2b. Even with changing friction
characteristic, the graphs stay almost symmetric. This behaviour was observed for a number of different
types of robot gears, although different experiences are described in the literature (Armstrong, 1988; Pfeiffer
and Holzl, 1995). But since a symmetric friction characteristic is essential for the proposed identification
method, it should be verified if necessary.

4. Parameter-linear modelling of rigid body dynamics

For identification, a representation of robot dynamics has to be determined which is linear with respect
to the unknown inertial and gravitational parameters. In this section, the basic idea for this determination is
described. It is derived using the modified Denavit—Hartenberg (MDH) notation for robot kinematics
(Khalil and Kleinfinger, 1986). The resulting base parameter vector is grouped according to the require-
ments of the identification scheme shown in Section 6.

4.1. Dynamic parameters

The dynamic parameters of each link 7 consist of its mass m;, its first moment s; := [sy 8, S }T = myrg,
(r; is the vector from the link’s coordinate frame to its centre of mass) and its inertia tensor about the
corresponding coordinate frame 7 ,@. Collecting the independent scalar components of s; and Ifi) results in
the parameter vector,

PnnkJ - []xxi [x i ]xzi [yyi ]}zi ]zzi Sxi Syi Szi mi]Ta (4)
which leads to the over-all parameter vector,
T
P = [Plink,l Diink2 - -- plink,n] . (5)

In practical robotic applications, a number of parameters are zero because of the orientation and po-
sition of the coordinate frames as well as symmetric shapes of the bodies. Furthermore, a large number of
parameters can be replaced by linear combinations (Section 4.3).

4.2. Equations of motions in parameter-linear form

The equations of motion of tree-structured robots can be derived in parameter-linear form by the
Newton—Euler approach (Khosla, 1988) or the Lagrangian equations of second kind (Gautier and Khalil,
1988a):

0=M(q)§+c(q,9 +glq) < Q= A(q,4,q)p- (6)

The left-hand side of Eq. (6) shows the conventional form of the dynamic equations, whereas on the
right side, the parameter-linear form of the equation of motion is given. The mass matrix M(q) is a function
of the joint angles ¢; ¢(q, ¢) describes centrifugal and Coriolis effects and g(g) resembles the influence of
gravitation. Q is the vector of joint torques. The matrix 4(q, ¢,§) contains the known kinematic quantities
of the robot, which is multiplied by the corresponding parameter vector p.

The moments of inertia of the motors /,; are usually given by the manufacturer so that they are not
included in the identification model. Nevertheless, they have to be compensated by means of an additional

model
0,=H(q)q+c.(q,9) (7)

as described in Daemi and Heimann (1998).
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4.3. Determination of base parameters

For application of LS-estimation techniques (Lawson and Hanson, 1974), the parameter vector p must
have minimal dimension (referred to as base parameter vector). This means that all parameters without
influence must be removed at first. For example, a revolute base axis can be regarded. If the base is fixed,
obviously only one element (Z..;) in 1 (11> has an influence on the dynamics. Second, the parameters must be
regrouped in order to eliminate all linear dependencies from A(q, ¢, §) so that it becomes a full rank matrix.

The determination of the base parameter vector is demanding, especially for robots with more than three
degrees of freedom (d.o.f.). One possibility is the use of numerical methods, like singular-value-decompo-
sition (Gautier, 1990; Pfeiffer and Holzl, 1995). The main disadvantage of this approach is that the de-
termination of the new parameter combinations is difficult and very time consuming.

Gautier and Khalil presented an analytical method in 1988. Their algorithm is based on a recursive
Lagrange algorithm. General rules were formulated for calculating the energy contributions of the pa-
rameters of link i with respect to those of link i — 1. These rules were further exploited to find a recursive
algorithm to calculate the base parameters.

4.4. Grouping of the base parameters and the dynamic equations

The two-step identification scheme presented in Section 6 is based on partitioning the base parameters
into three vectors:

1. The gravitational parameters p, occur in g(q).
2. The diagonal parameters p,;, occur on the diagonal of M (q) but not in g(q).
3. The off-diagonal parameters py,4 occur only in the off-diagonal elements of M(q).

The grouping property holds for any open kinematic chain, i.e. for typical serial industrial robots.
Furthermore, typically the number of elements of p,, 4 is small due the symmetric structure of the links, e.g.
for the manutec-r15, py;,4 has only one element. The grouping leads to a separation of matrix 4(q, ¢, §) in
Eq. (6) into different components:

0 = Ama(q, §)Pria + Avod (4 §)Priod + Ame(q, 9P, + A(q, @) + Ae(g)P, - )
— ——
M(q)§ <(g-4) 2(9)

Of course, the parameter vectors are still coupled by ¢(q,§). Nevertheless, they can be separately
identified since this coupling is eliminated by a proper choice of identification measurements (Section
6.3).

5. Conventional identification scheme

There exists a vast amount of literature on the identification of the rigid body model (Armstrong, 1988,
1989; Daemi and Heimann, 1996; Daemi and Grotjahn, 1996; Gautier and Khalil, 1988b; Gautier et al.,
1995; Pfeiffer and Holzl, 1995; Khosla, 1988; Khosla and Kanade, 1987; Presse and Gautier, 1993; Priifer
et al., 1994). However, most of the methods are variations of the same identification scheme. The robot is
moved along a trajectory, where joint motion and torque are measured. Finally, the parameters are esti-
mated by the use of the LS technique.
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5.1. Least-squares estimation

The LS identification is based on the representation of robot dynamics shown on the right-hand side of
Eq. (6). For a certain point in time #,, measurements of m < n different axes y,,...,7, are combined as

T
Qt/c = [Q')"Islk e Q’»”mﬂfk]T and .Pt" - |:A’;‘tk A”/Tm,tk} (9)

with O, ,,, the torque of joint y; and A4, ,, the corresponding row of A(q(#),§(#),§(#)). Further combi-
nation of measurements at » (» - m > n) different time steps leads to the over-determined vector equation,

O0=Yp+e, (10)

. T . . T
with the measurement vector Q = [Q,l ...Q,] . the observation matrix ¥ = ['I’E ...¥]] and the unknown

error e which has to be introduced due to measurement noise. The general solution for Eq. (10) can be
found by a pseudo-inverse of the observation matrix:

p= (YY) Y70, (11)

This shows why p has to have minimal dimension. Otherwise, ¥ would not have full rank and the
pseudo-inverse would not exist. The most common definition of ¥ is ¥ = ¥ which leads to a minimum of
the error vector e in the LS sense:

PLs = m’;n(eTe) = ps = (YY) V0. (12)

Relation (12) is the most general case that does not take into account any a priori information of the
system or disturbances. In the literature, a lot of refinements can be found. Seeger (1992) proposed
weighting with maximal joint torque to account for the different torque ranges of the drives. Gautier and
Khalil (1992) suggested another weighting method using expected values of the parameters. Other well-
known refinements are the instrumental variable method (Seeger, 1992) or the total least-squares estimation
(Gautier et al., 1994).

5.2. Trajectory optimisation

A sufficient excitation of all parameters is necessary to ensure their identifiability. If one or more pa-
rameters are not excited, ¥ loses its full rank and Eq. (11) cannot be solved. However, already a poor
excitation leads to a large influence of disturbances on the estimation result. An upper bound for the
relative error of the estimated parameter vector is given by (Armstrong, 1988; Lawson and Hanson, 1974)

HP —b M Tmax (V)
Irdl 12l Tmin( )

and o (V) and oy (W) is the largest and smallest singular value of W, respectively. By minimising the
condition of the observation matrix, the standard criterion for trajectory optimisation is defined (Arm-
strong 1988, 1989; Gautier and Khalil, 1988b; Pfeiffer and Holzl, 1995). Other optimisation criteria, like
maximisation of the smallest singular value, can be found in Armstrong (1988, 1989), Presse and Gautier
(1993), Shaefers et al. (1993) and Daemi and Grotjahn (1996).

One disadvantage of the optimisation is the computational burden (Armstrong, 1988, 1989; Daemi and
Grotjahn, 1996; Gautier and Khalil, 1992). The main problem, however, is that the robot control must
provide the possibility of driving arbitrary trajectories. With standard industrial controls, however, only
very simple trajectories (line, circles, ptp) can be generated.

< cond(¥P) with cond(¥) =

(13)
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5.3. Friction compensation

The most common way of compensating the influence of friction on rigid body identification is to
perform ‘warm-up’ motions to reach stationary temperature and lubrication conditions. Then, the rigid
body model is identified together with the friction model (Gautier and Khalil, 1988b; Priifer et al., 1994;
Pfeiffer and Holzl, 1995). The disadvantage of this approach is the large number of parameters which
results from the more complex friction models (2) and (3). For example, for a six d.o.f. robot, it would lead
to 18 additional parameters which would make the identification much more complex or even impossible.

The other possibility is to compensate friction by a model identified in advance (Daemi and Heimann,
1996). As shown in Section 3, however, the operating conditions change so fast that an exact friction
compensation is impossible. This leads to systematic errors in rigid body identification.

6. Two-step identification

In Section 5, the conventional identification scheme and its main disadvantages — the need of optimised
trajectories and model-based friction compensation — are discussed. In this section, a different approach is
introduced which eliminates these disadvantages.

6.1. Identification scheme

The identification scheme is based on the grouping of the base parameters presented in Section 4.4. In
the first step, the elements of g(g) and M(q) are ‘measured’ for a number of different joint configurations
(Sections 6.2 and 6.3). In the second step, parameters are estimated by a combined evaluation of the
separate measurements.

The measuring of the gravitational torque at m different joint configurations and the combination of all
these measurements leads to

QEP Agﬂ/l (‘1(1)> eV

=l m| | (14
Q(,m) Ag‘y (q<’n)) e(’”)

Y

Iy ¥y ey

where Q") are the measured gravitational torques, Ay, (¢") are the corresponding rows of 4,(q) for the
given joint configuration, ¢ and e are the unknown measurement errors. Suitable joint configurations
are selected by analysis of the gravitational vector g(q) (Section 6.2). The application of a weighted LS
estimation leads to

b= Ir;in(egTWeg) = b, = (!Ilqu/g)_qungqu. (15)

The diagonal weighting matrix takes into account the different ranges of the torque measurements by
weighting them with the maximum torque of each axis

W = diag(w,, ...w,,) with w, =0 ! (16)

7j,max

Next, pyq 18 identified by measuring diagonal elements of the mass matrix M;; (see M, in Section 6.3)at k
different operating points which are chosen by analysing M(q) (Section 6.2). These measurements are
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combined and the influence of the already known p, is compensated as well as the diagonal elements H;; of
the mass matrix H(q)

AZ*E[]) Awmgy, (q(l),ll;,,l) Hzgll) Amay, (q(l)’ ”VI) el
_ p—| | = Puat | 1| (17)
MS{Q AMg-,“/k (q(k>7 u}'k) I-I,gkk) AMd,y,, (q(k)7 uyk) \—eii-/
oo Yud emd

The compensation of p, does not significantly worsen the estimation result. The measurements of the
elements of g(g) are very simple and a relatively high precision of p, can be achieved. The vector u, is a
vector of same size as ¢ with a 1 in the component y; of the measured inertia and zeroes elsewhere. This
means that Eq. (17) has the dimension of a moment of inertia for rotational joints and the dimension of a
mass for translational joints. An estimation for p,;, can then be found by

~ . ~ —1
Pyig = min (exaWema) = Pyg = (PaaW Pma)  Parg W P (18)
Md

The identification of p, is completely analogous to Egs. (17) and (18). The difference lies in the exe-
cution of the measurement, where acceleration of one axis is related to the torque of another axis (Daemi
and Heimann, 1998). Finally, p,, pyq and py,q are combined to p.

6.2. Choice of joint configurations

It must be ensured that all parameters are sufficiently excited. The influence of one special parameter in
g(q) and M(q) depends on the joint angles. This dependence is excited by varying the joint configuration.
As an example, one can regard the fourth diagonal element of M(q) of the manutec-ri5: My =
P+ pu sinz(q5) + piscos’(gs). The parameters pyo, pi; and pi4 can be excited and estimated by varying gs
for different measurements of My,. In our experiment, for example, we changed ¢s from —100° to 100° in
steps of 25°. An analogous analysis and variation of all angular dependencies in g(g) and M(q) yields
relatively good results for the characteristic values of the estimation problem, like condition number or
smallest singular value. Therefore, an optimisation is not necessary to ensure sufficient excitation.

6.3. Measurement trajectories

A major advantage of the measurements at operating points is the fact that they can be implemented
easily in typical industrial robot controls. Each measurement is carried out by moving the axis ‘back and
forth’ along some trapezoidal velocity profile in the neighbourhood of the operating point. No optimisation
strategy is necessary as only one quantity is interesting and the trajectories have a special characteristic to
ensure excitation of this quantity.

For measurements of gravitational torques, long periods with constant velocity have to be included (Fig.
3a) in order to excite gravitational effects and to eliminate inertial influences. The mean value between an
averaged torque at forward and backward motion gives the desired gravitational torque.

Motions with a higher share of acceleration are used to identify the moments of inertia (Fig. 3b). The
gravitational component is compensated and a joint model

O; = Myi; + a13; + arsign(;) + asg” (19)

is adapted to the measurement again by use of a LS estimation
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t[s] t[s]

Fig. 3. Typical trajectories for identification of (a) gravitational and (b) inertial parameters.

Q) aln) sien(a(n) @) 0i(n)
: . |, r=| | =p =) YT (20)

W:

Q) ) sien(a0) @) o)

T
with p, = [My, a1, 2, d3)

The measurement of the off-diagonal elements of the inertia matrix is similar to the gravitational
measurements. Axis i is moved at a very low constant velocity to avoid sticking and axis j is accelerated in
the neighbourhood of the operating point. Since speed of axis i is constant, a very simple linear friction
model is applied

0; = Mg + a1q;. (21)

Finally, the coupling inertia M; is identified similarly to Eq. (20).

The coupling expressed by ¢(q, ¢) (Section 4.4) has no influence on the measurements of gravitational
torques and the diagonal elements of the mass matrix. The element of ¢(q,§) that corresponds to the
measured torque becomes zero since only this single axis is moved. For the measurements of the off-di-
agonal elements of the mass matrix, however, the influence of ¢(q,§) is not zero in general. But it can
usually be neglected as both axes are moved at low velocity.

7. Experimental set-up

The test stand consists of the commercial robot Siemens manutec-r15 and its standard control 4 CR-20.
The measurements are carried out by a dSPACE real-time computer which is connected to a WinNT-PC
with the program package MATLAB/SIMULINK.

7.1. Measurement and signal processing

For the identification joint positions and driving torques are obtained from the motor encoder signals
and motor currents. Velocities and accelerations are calculated by numerical differentiation. All mea-
surements are filtered with a non-causal, phase-neutral eighth-order Butterworth low-pass filter. Although
all signals are measured on the motor side, the influence of gear elasticity and backlash can be neglected
since only shock- and jerk-less trajectories are used.
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The Siemens manutec-rl5 is a six d.o.f. industrial robot with revolute joints. In Fig. 4, the definition of
the MDH coordinate frames and parameters are given. As mentioned in Section 4.1, a lot of parameters can
be set to zero since they have no influence on the dynamics. Table 1 shows the remaining elements of the
Dink,; for all links. The application of Gautier and Khalil’s algorithm (1988) to these definitions leads to the
base parameter vector

D1
)2
b3
2
Ds
De
P7
Ds
Do
Pio
Pu
P12
P13

LP14 |

Loy + Lyo + Lys + [1(m3 + my + ms + mg)
]xx2 - [}yZ — l%(m; + my + ms + mﬁ)
]xz2
L + B (my + my + ms + mg)

S + 11 (m3 + my + ms + mg)

Loy — Lys + Lya + 21354 + 13(ma + ms + mg)
Loy + Ly + 2154 + 13(ma 4 ms + mg)
$y3 — Sz — Lr(ma + ms + mg)
1xx4 + Iny - 1yy4
Izz4 +[yv5
IxxS + Ixx6 - Iny
IzzS + [xx6
§y5 — 826
o

(22)

The influence of the base parameters on g(q) and M(q) are given in Table 2. It shows that the base pa-
rameters can be divided according to Eq. (8) into three groups:

L. ps, ps, pi5 are the only parameters contained in g(g). They are combined in p,.

2. All remaining parameters with the exception of p; can be found on the diagonal elements of M(q). They
are combined in pyy.

A6 4 %6
s
7 AS X4, X5, X6 u % dijoi| a
- f-# @ Al 2 1 -q, LlO] O
<> Vs
0 . . Y1 2 2 q, 0|0 |-n2
: L LN ! X1, X
éij , Az{) n ",./y2 3lgtn2f 0| 0| O
: : 2 I 4 -q, L0 | w2
.__.'__.__.[‘}A?i _______ x3 z i > 9s 010 |-m2
! 5 l s . 6 4 |0]0|n2
; e Yo
' X0
Fig. 4. MDH coordinate frames and parameters for the manutec-rl5.
Table 1
Non-negligible parameters of the manutec-ri5
Piink 1 Diink 2 Piink 3 Plink 4 Diink 5 Diink 6

L Lo, Loy Loy Ly S0 Lo, Lys, Loz, 803, m3

Loy Lyay Log s S24,my

Lis, Lys, Lzs, 8,5, ms

Loy Lyes L6, 526, M
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Table 2

Dependencies of g(g) and M(q) on p for the manutec-r15
M;lqg) j=1 j=2 j=3 j=4 j=5 j= gi(q)
i=1 Pr; P2, P65 P8, P9; Pros P3; P9, P11, Pr2; P13, P4 P9, Pit, P2 P13, Pla P1os P11, P13, P4 P12, P13 Pu 0

P, P2, P13, Pla
i=2 Sym. D4, P7,P8, 09, Pt D7:D85 P9, P11, P12, P11, P13, D4 JZEZE D4 Dss P8, P13
D12, P13, P14 P13, P4

i= Sym. Sym. P1,P9, P11, P12, P13;: P14 P11, P13, Pla P2, P13 Pis D8, D13
i=4 Sym. Sym. Sym. P10, P11, P14 0 D4 P13
i=5 Sym Sym Sym Sym P12 0 D13
i=6 Sym. Sym. Sym. Sym. Sym. Pia 0

3. For this robot p; is the only parameter that can only be found on the off-diagonal elements of M(q) and
thus, has to be identified by measuring coupling torque.

A more complete description of the robot is given in Daemi and Heimann (1998) and Daemi (1998).

8. Results

The algorithm described in this paper is applied to the manutec-rl5. For the identification of p,, mea-
surements at 64 joint configurations are used, 92 configurations for p,;y and nine configurations for py.q-
The duration for all measurements is about 45 min. A second series of measurements is carried out with an
additional load of 10.86 kg mounted on the end effector. The distance of its centre of mass to the hand wrist
is 140 mm. Figs. 5 and 6 give a comparison of the measured gravitational torques and moments of inertia
with those modelled by the identified parameter vectors. The dependencies on the joint angles are accurately

0 10 20 30 40 50 60 70
configuration number

Fig. 5. Gravitational torques with (x) and without (O) additional mass compared to their model representation (— and - - -).

|Miz /Qi,max‘

0 10 20 30 40 50 60 70 80 90
configuration number

Fig. 6. Moments of inertia with (x) and without (O) additional mass compared to their model representation (— and - - -).
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Table 3
Identification results for manutec-r15 with (A) and without additional (B) payload
i 1 2 3 4 5 6 7
pi(A) 32.015 —28.058 —2.187 19.905 48.491 9.602 13.313
pi(B) 36.907 —33.782 —2.435 22.565 51.896 16.331 18.562
Ap; 4.892 —5.724 —0.247 2.6597 3.405 6.7296 5.2493
Ap;(exp.) 2.713 —2.713 0 2.713 5.409 5.786 5.786
i 8 9 10 11 12 13 14
pi(A) —15.836 0.0000 0.0443 0.2883 0.1554 —0.1885 0.3760
pi(B) —23.244 —0.0895 0.2198 0.2274 0.4381 —1.9983 0.3980
Ap; —7.408 —0.0895 0.1755 —0.0609 0.2826 —1.8097 0.0220
Ap;(exp.) —7.885 0.0 0.0 0.0 0.0 —1.518 0.0470
0.02
g g
S oR
< O measurement
—— model
-0.02

-150 -100 -50 0 50 100 150
q,[°]

Fig. 7. Clipping from Fig. 6 without additional mass (configuration number 10-24).

reflected by the model and the influence of the additional mass is obvious. Many of the measured moments
of inertia are constant with respect to changing joint configuration. But the main reason for this behaviour
is the chosen representation in which the influence of the gravitational parameters is compensated. They
contribute significantly to the angular dependency since they reflect contributions due to Steiner’s theorem.

Numerical results for the base parameters with and without additional mass are shown in Table 3. The
differences between the two identification results are also given, which reflect the influence of the additional
mass. They are compared to their expected values resulting from the base parameter definition in Eq. (22).
It has to be considered that due to the compensation of the motor inertia and the friction, only a small
fraction of the measured torques contain information for the identification process. Especially, for pa-
rameters with higher indices results become more inaccurate because the influence of friction in the hand
axes increases. Still, the increase of parameters is well reflected in the measurements indicating a successful
identification of the complex dynamics of the robotic system.

Besides simplicity of the measurements and no need of model-based friction compensation, another
advantage of this method becomes visible. By analysing the measurements, an evaluation of the model
structure is possible to find unmodelled effects as well as unnecessary parameters. An example is given in
Fig. 7, where the gravitational torque of joint 3 is plotted as a function joint angle four. An offset of about
30° of the measured sinusoidal torque characteristic is observable which cannot be reflected by the model.
This is due to the unmodelled distance of the centre of mass of joint four to its rotational axis.

9. Conclusions

The conventional model consisting of dry friction and viscous damping is usually not sufficient for the
modelling of friction losses in industrial robots’ gears. But even by more complex models, the change of
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friction with respect to temperature and lubrication conditions cannot be reflected with maintainable effort.
The lack of predictability can lead to a deterioration of rigid body identification. The presented identifi-
cation method eliminates this disadvantage. Furthermore, it is much easier to apply to standard industrial
robots since only simple trajectories with trapezoidal velocity profile are used. The third main advantage of
the presented method is the possibility of evaluating the model by investigation of the measurements. The
efficiency of the method is illustrated by experimental application to the standard industrial robot manutec-
rl5.
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